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The usual approach to the development of new nonlinear dielectric materials focuses on the search for
materials in which the components possess an inherently large nonlinear dielectric response. In contrast, based
on thermodynamics, we have presented a first-principles approach to obtain the electrostriction-induced effec-
tive third-order nonlinear susceptibility for electrorheological(ER) fluids in which the components have in-
herentlinear, rather than nonlinear, responses. In detail, this kind of nonlinear susceptibility is in general of
about the same order of magnitude as the compressibility of the linear ER fluid at constant pressure. Moreover,
our approach has been demonstrated to be in excellent agreement with a different statistical method. Thus, such
linear ER fluids can serve as a new nonlinear dielectric material.
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Nonlinear materials with large values of the third-order
nonlinear susceptibilityx [1] are in great need in industrial
applications, such as nonlinear optical switching devices for
use in photonics and real-time coherent optical signal proces-
sors, and new types of nonlinear dielectric materials are
needed for use in electronic and microwave components and
sensor windows. It is usually believed that an effective non-
linear dielectric response can appear in a composite material
in which at least one component should possess an inherent
nonlinear response. Thus, the common way to develop new
nonlinear dielectric materials is to seek materials in which
the components possess an inherently large nonlinear re-
sponse[2]. In contrast, by using a first-principles approach
based on thermodynamics, we shall present a quite different
method to obtain a nonlinear dielectric response from elec-
trorheological(ER) fluids in which the components possess
inherent linear responses only(namely, linear ER fluids),
under the influence of electrostriction. Thus, such linear ER
fluids can also serve as a nonlinear dielectric material be-
cause an effective third-order nonlinear susceptibility can be
induced due to the electrostriction effect. For clarity, it is
worth noting that the above-mentioned linear ER fluids rep-
resent ER fluids whose dielectric constants are independent
of the external electric field.

When an ER fluid[3–7] is subjected to a strong external
field, elongated chains or columns of polarizable dielectric
particles(e.g., titanium particles) form immediately parallel
to the field due to the anisotropic long-range particle inter-
action inside the liquid carrier(e.g., silicone or corn oil).
Because of this sort of rapid field-induced aggregation, re-
cently ER fluids have received much attention[4–7] in both
scientific research and industrial applications. For instance,
ER fluids were also proposed as a method of constructing
shock absorbers on magnetically levitated trains.

Let us start by considering what the electrostriction effect
is for ER fluids. In the presence of an inhomogeneous elec-
tric field E, it is known that a translational forceFt is exerted
on a particle, given by

Ft = aE · = E, s1d

wherea represents the polarizability of the particle. There-
fore, an inhomogeneous field acting on an ER fluid causes a
particle concentration gradient with high concentrations at
high field strengths. Next, if the ER fluid is situated partially
in a strong external electric field at constant pressure, the
density of the ER fluid in the field will increase accordingly
due to the interaction between the induced dipole moment
inside the particles and the electric field, which in turn yields
an increase in the effective dielectric constant. This effect is
called electrostriction. In fact, the phenomenon of electros-
triction has been extensively studied, e.g., for dipolar fluids
[8], near-critical sulfur hexafluoride in microgravity[9],
ferroelectric liquid-crystalline elastomers[10], and an all-
organic composite consisting of polyvinylidene fluoride trif-
luoroethylene copolymer matrix and copper-phthalocyanine
particles[11]. Regarding the ER system, one[12] studied the
electrostriction of solid ER composites in an attempt to apply
them in sensing shear stresses and strains in active damping
of vibrations due to the high sensitivity of ER composites to
shear electrostriction. To the best of our knowledge, there is
neither theoretical nor experimental research which treats the
electrostriction effect of ER fluids. In this paper, based on
thermodynamics we shall present a first-principles approach
to derive the electrostriction-induced effective nonlinear
third-order susceptibilityx of linear ER fluids.

For investigating the electrostriction effect, take the ex-
perimental situation as follows. There is a capacitor with
volumeVc, in which the electric field and the dielectric dis-
placement are denoted byEc and Dc, respectively. Both of
them should satisfy the usual electrostatic equations, namely,

= ·Dc = 0, s2d

= 3 Ec = 0. s3d

Here Eq. (3) implies that the electric fieldEc can be ex-
pressed as the gradient of a potentialf,
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Ec = − = f. s4d

Under the appropriate boundary condition, the inhomoge-
neous ER fluid(in the capacitor) can be represented as a
region of volumeVc, surrounded by a surfaceSs. This kind of
boundary condition is

f = − E ·R on Ss, s5d

which, if the ER fluid withinVc were uniform, would give
rise to an electric field which is identical toE everywhere
within Vc. As a matter of fact, even in an inhomogeneous ER
fluid with this boundary condition, the volume average of the
electric field kEcl within Vc still equals that of the external
field kEl, i.e.,

kEcl =
1

Vc
E EcsRdd3r = kEl. s6d

It is worth noting that in this case there is no applied field
outside the capacitor. Also, the whole ER fluid with volume
V is situated both inside and outside the capacitor at a con-
stant pressurep.

In the presence of the inhomogeneous external electric
field E, the effective linear dielectric constantee and effec-
tive third-order nonlinear susceptibilityx for the ER fluid
inside the capacitor are defined as

kDcl = eekEl + 4pxukElu2kEl, s7d

wherek¯l denotes the volume average of̄. A similar defi-
nition [13] was used for a composite material which is sub-
jected to a homogeneous external electric field. In view of
the real quantities under consideration, Eq.(7) can be rewrit-
ten as

kDcl = eekEl + 4pxkEl2kEl. s8d

On the other hand, based on thermodynamics the effective
dielectric constanteE including the incremental part due to
the electrostriction is defined as

eE ; S ] kDcl
] kEl DT,p

= S ] kDcl
] kEl DT,r

+E fsddS ] kDcl
] rsddDT,kEl

3S ] rsdd
] kEl DT,p

dd, s9d

wherersdd stands for the density of the particles with diam-
eterd, andT is the temperature. Heres]kDcl /]kEldT,r corre-
sponds to the effective linear dielectric constant, namely,ee.
In Eq. (9), fsdd denotes a specific size distribution which
exists in real ER fluids[14], e.g., the lognormal distribution
fsdd=s1/Î2psddexph−fln2sd/ddg /2s2j, wheres is the stan-
dard deviation andd the median diameter.

Accordingly, the incremental dielectric constant due to the
electrostriction[the last term of Eq.(9)] is equivalent to
12pxkEl2. That is,

12pxkEl2 =E fsddS ] kDcl
] rsddDT,kEl

S ] rsdd
] kEl DT,p

dd. s10d

Let us take one step forward to rewrite Eq.(10) as

xkEl2 =
1

12p
E fsddkElS ] ee

] rsddDT,kEl
S ] rsdd

] kEl DT,p
dd.

s11d

The differential increase of the density inside the capacitor
drsdd corresponds to the increase in mass equal toVcdrsdd.
Naturally, this increase in mass is equal to a decrease in mass
outside the capacitor, which is given by −rsdddsV−Vcd
=−rsdddV, so that drsdd=−frsdd /VcgdV. Consequently, we
may rewrite Eq.(11) as

xkEl2 = −
1

12p
E fsddkEl

rsdd
Vc

S ] ee

] rsddDT,kEl
S ] V

] kElDT,p
dd.

s12d

Next, we can obtains]V/]kEldT,p by using the differential
of the free energy dF,

dF = − p dV − SdT +
Vc

4p
kEldkDcl, s13d

whereS denotes the entropy. In view of the transformed free
enthalpyG

G = F + pV−
Vc

4p
kElkDcl, s14d

the differential ofG admits the form

dG = − SdT + V dp −
Vc

4p
kDcldkEl. s15d

Based on this equation, we obtain

S ] V

] kElDT,p
= −

VckEl
4p

S ] ee

] p
D

T,kEl
. s16d

Then, the substitution of Eq.(16) into Eq. (12) yields

xkEl2 =
1

48p2 E fsddkEl2rsddS ] ee

] rsddDT,kEl
S ] ee

] p
D

T,kEl
dd.

s17d

Now let us use

S ] ee

] p
D

T,kEl
= brsddS ] ee

] rsddDT

, s18d

where

b = −
1

V
S ] V

] p
D

T

s19d

denotes the compressibility in the absence of the external
electric field. For deriving Eq.(18), we have neglected the
terms which depend onkEl because they lead to terms in
powers ofkEl higher than the second in Eq.(17). In the light
of the same approximation, the substitution of Eq.(18) into
Eq. (17) leads to
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xkEl2 =
1

48p2 E fsddkEl2brsdd2S ] ee

] rsddDT

2

dd. s20d

So far, the effective third-order nonlinear susceptibilityx of
the ER fluid is given by

x =
b

48p2 E fsddrsdd2S ] ee

] rsddDT

2

dd. s21d

For determining the effective linear dielectric constantee, we
can resort to the anisotropic Maxwell-Garnett theory,
namely,

gLsee − e2d
e2 + gLsee − e2d

=
4p

3
E fsdd

rsdd
msdd

asdddd, s22d

where msdd fasddg denotes the mass(polarizability) of the
individual particle with diameterd, ande2 the dielectric con-
stant of the carrier liquid. It is known that in the presence of
an electric field, a particle chain can be formed in the direc-
tion of the field, and thus structural anisotropy should appear
inside this ER fluid. Accordingly, in Eq.(22) gL sgLù1/3d is
the local field factor in the longitudinal field case, which was
measured by using computer simulations[15], satisfying the
sum rulegL+2gT=1 [16]. HeregT represents the local field
factor in the transverse field case. AsgL=1/3, the usual
Clausius-Mossotti equation is recovered, which is valid for
an isotropic system. In fact, the degree of anisotropy of the
present system is measured by how fargL deviates from 1/3.

Equation(21) is the main result of the present paper. In
detail, the electrostriction-induced third-order nonlinear sus-
ceptibility x can be expressed in terms of the size distribu-
tion function and density of the particles, the effective linear
dielectric constant, etc. In particular, it is apparent that at
constant pressurex is proportional to the compressibility of
the ER fluids of interest. More precisely,x is of about the
same order of magnitude as the compressibility, which can
be readily measured in experiments. Let us computex for a
real example of an ER fluid given by Klingenberget al. [17].
In detail, this monodisperse ER fluid contains hollow silica
spherical particles embedded in corn oil. The parameters ob-
tained from the experiment are diameter of the particles 95
µm, e2=2.9, dielectric constant of the particles 11, volume
fraction of the particles 0.26, apparent density 0.74 g/mL,
and density of the corn oil 0.92 g/mL. Based on these
parameters, it is straightforward to obtaina=1.5
310−7 cm3, r=0.228 g/cm3, and m=1.02310−7 g. If we
take gL=1/8, x=83.7b. Further, asb=2.1310−10 Pa−1, x
=1.76310−9 sV/cmd−2. Interestingly, Eq.(21) has exactly
bridged the mechanical properties and nonlinear dielectric
properties of linear ER fluids. In other words, the mechanical
properties give rise to nonlinear dielectric responses(third-
order nonlinear susceptibilities) of linear ER fluids.

In what follows, we would like to show the correctness of
the present theory by comparing with a different statistical
method. First, let us derive the increase of the densityDr due
to electrostriction, based ons]V/]kEldT,p. Let us start from

Dr =E E
0

kEl

fsddS ] rsdd
] kEl DT,p

dkEldd. s23d

To this end, we obtain

Dr =
1

8p
E fsddkEl2brsdd2S ] ee

] rsddDT

dd. s24d

Again, in the expression forDr terms in powers ofkEl
higher than the second have been neglected. For the mono-
disperse case, Eq.(24) reduces to

Dr =
1

8p
kEl2br2S ] ee

] r
D

T

. s25d

Let us assume there is an ideal gas inside the capacitor. In
this case, the compressibility is given by

b =
M

rRT
, s26d

whereM is the molecular weight, andR the molar gas con-
stant. For the ideal gas(monodisperse case), setting gL
=1/3 in the above Clausius-Mossotti equation[Eq. (22)]
yields

ee − 1

ee + 2
=

4p

3

r

m
a. s27d

In view of ee−1!1 for ideal gases, we obtain

S ] ee

] r
D

T

=
4p

m
a, s28d

and hence the desired result forDr,

Dr =
kEl2ra

2kBT
. s29d

This equation can also be achieved by using a statistical
method. According to Boltzmann’s distribution law, the num-
ber of moles per cm3 of the gas at a point with field strength
kEl is given by

N = N8expS−
W

kBT
D , s30d

whereW denotes the average value of the work required to
bring a molecule into the fieldkEl, and N8 the number of
moles per cm3 of the gas at a point in the absence of field. It
is straightforward to obtain

Dr = MsN − N8d =
kEl2ra

2kBT
, s31d

which is exactly the same as Eq.(29). Again, the terms in
higher powers ofkEl than the second have been neglected.

To sum up, by using thermodynamics we have presented a
first-principles approach to the derivation of the effective
third-order nonlinear susceptibility[Eq. (21)] of linear ER
fluids under the influence of electrostriction, which is of
about the same order of magnitude as the compressibility of
the ER fluid at constant pressure. Our approach has been
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demonstrated to be in excellent agreement with an alterna-
tive statistical method.

The aim of the present paper is to exploit electrostriction
in a linear ER fluid in order to generate a nonlinear dielectric
response. The proposed mechanism works for dc electric
fields. It should also be expected to work for ac fields with
frequencyn if the size of the sample is not greater thancs/n,
wherecs is the sound velocity. In this connection,n can be
up to a kilohertz or so. Otherwise the required mass density
oscillations will not be able to keep up with the rapid
changes in the electric field.

The theory described in this paper can be used to study
any colloidal suspension like magnetorheological fluids[18],

ferrofluids [19], etc. Since there exist permanent magnetic
dipole moments inside magnetorheological fluids and ferro-
fluids, the derivation of the effective linear permeability can
still be done by using the present anisotropic Clausius-
Mossotti equation, in which, however, terms for permanent
magnetic moments should be added accordingly. In a word,
we have shown theoretically that linear ER fluids under the
influence of the electrostriction effect can serve as a new
nonlinear dielectric material.
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